Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dual sparse training framework: inducing activation map sparsity via Transformed $\ell1$ regularization (2405.19652v1)

Published 30 May 2024 in cs.CV

Abstract: Although deep convolutional neural networks have achieved rapid development, it is challenging to widely promote and apply these models on low-power devices, due to computational and storage limitations. To address this issue, researchers have proposed techniques such as model compression, activation sparsity induction, and hardware accelerators. This paper presents a method to induce the sparsity of activation maps based on Transformed $\ell1$ regularization, so as to improve the research in the field of activation sparsity induction. Further, the method is innovatively combined with traditional pruning, constituting a dual sparse training framework. Compared to previous methods, Transformed $\ell1$ can achieve higher sparsity and better adapt to different network structures. Experimental results show that the method achieves improvements by more than 20\% in activation map sparsity on most models and corresponding datasets without compromising the accuracy. Specifically, it achieves a 27.52\% improvement for ResNet18 on the ImageNet dataset, and a 44.04\% improvement for LeNet5 on the MNIST dataset. In addition, the dual sparse training framework can greatly reduce the computational load and provide potential for reducing the required storage during runtime. Specifically, the ResNet18 and ResNet50 models obtained by the dual sparse training framework respectively reduce 81.7\% and 84.13\% of multiplicative floating-point operations, while maintaining accuracy and a low pruning rate.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Xiaolong Yu (5 papers)
  2. Cong Tian (21 papers)

Summary

We haven't generated a summary for this paper yet.