Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Multiple typical ranks in matrix completion (2010.09777v2)

Published 19 Oct 2020 in math.AG and math.CO

Abstract: Low-rank matrix completion addresses the problem of completing a matrix from a certain set of generic specified entries. Over the complex numbers a matrix with a given entry pattern can be uniquely completed to a specific rank, called the generic completion rank. Completions over the reals may generically have multiple completion ranks, called typical ranks. We demonstrate techniques for proving that many sets of specified entries have only one typical rank, and show other families with two typical ranks, specifically focusing on entry sets represented by circulant graphs. This generalizes the results of Bernstein, Blekherman, and Sinn. In particular, we provide a complete characterization of the set of unspecified entries of an $n\times n$ matrix such that $n-1$ is a typical rank and fully determine the typical ranks for entry set $G(n,1)$ for $n<9$. Moreover, we study the asymptotic behaviour of typical ranks and present results regarding unique matrix completions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.