Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal Matrix Completion (1402.2324v2)

Published 10 Feb 2014 in stat.ML, cs.IT, cs.LG, and math.IT

Abstract: The problem of low-rank matrix completion has recently generated a lot of interest leading to several results that offer exact solutions to the problem. However, in order to do so, these methods make assumptions that can be quite restrictive in practice. More specifically, the methods assume that: a) the observed indices are sampled uniformly at random, and b) for every new matrix, the observed indices are sampled afresh. In this work, we address these issues by providing a universal recovery guarantee for matrix completion that works for a variety of sampling schemes. In particular, we show that if the set of sampled indices come from the edges of a bipartite graph with large spectral gap (i.e. gap between the first and the second singular value), then the nuclear norm minimization based method exactly recovers all low-rank matrices that satisfy certain incoherence properties. Moreover, we also show that under certain stricter incoherence conditions, $O(nr2)$ uniformly sampled entries are enough to recover any rank-$r$ $n\times n$ matrix, in contrast to the $O(nr\log n)$ sample complexity required by other matrix completion algorithms as well as existing analyses of the nuclear norm method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Srinadh Bhojanapalli (44 papers)
  2. Prateek Jain (131 papers)
Citations (98)

Summary

We haven't generated a summary for this paper yet.