Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Quantum Algorithm for Ant Colony Optimization (2010.07413v2)

Published 14 Oct 2020 in cs.ET

Abstract: Ant colony optimization (ACO) is a commonly used meta-heuristic to solve complex combinatorial optimization problems like traveling salesman problem (TSP), vehicle routing problem (VRP), etc. However, classical ACO algorithms provide better optimal solutions but do not reduce computation time overhead to a significant extent. Algorithmic speed-up can be achieved by using parallelism offered by quantum computing. Existing quantum algorithms to solve ACO are either quantum-inspired classical algorithms or hybrid quantum-classical algorithms. Since all these algorithms need the intervention of classical computing, leveraging the true potential of quantum computing on real quantum hardware remains a challenge. This paper's main contribution is to propose a fully quantum algorithm to solve ACO, enhancing the quantum information processing toolbox in the fault-tolerant quantum computing (FTQC) era. We have Solved the Single Source Single Destination (SSSD) shortest-path problem using our proposed adaptive quantum circuit for representing dynamic pheromone updating strategy in real IBMQ devices. Our quantum ACO technique can be further used as a quantum ORACLE to solve complex optimization problems in a fully quantum setup with significant speed up upon the availability of more qubits.

Citations (19)

Summary

We haven't generated a summary for this paper yet.