Papers
Topics
Authors
Recent
2000 character limit reached

Approximative Policy Iteration for Exit Time Feedback Control Problems driven by Stochastic Differential Equations using Tensor Train format (2010.04465v1)

Published 9 Oct 2020 in math.OC

Abstract: We consider a stochastic optimal exit time feedback control problem. The Bellman equation is solved approximatively via the Policy Iteration algorithm on a polynomial ansatz space by a sequence of linear equations. As high degree multi-polynomials are needed, the corresponding equations suffer from the curse of dimensionality even in moderate dimensions. We employ tensor-train methods to account for this problem. The approximation process within the Policy Iteration is done via a Least-Squares ansatz and the integration is done via Monte-Carlo methods. Numerical evidences are given for the (multi dimensional) double well potential and a three-hole potential.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.