Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automated Performance Tuning for Highly-Configurable Software Systems (2010.01397v1)

Published 3 Oct 2020 in cs.SE

Abstract: Performance is an important non-functional aspect of the software requirement. Modern software systems are highly-configurable and misconfigurations may easily cause performance issues. A software system that suffers performance issues may exhibit low program throughput and long response time. However, the sheer size of the configuration space makes it challenging for administrators to manually select and adjust the configuration options to achieve better performance. In this paper, we propose ConfRL, an approach to tune software performance automatically. The key idea of ConfRL is to use reinforcement learning to explore the configuration space by a trial-and-error approach and to use the feedback received from the environment to tune configuration option values to achieve better performance. To reduce the cost of reinforcement learning, ConfRL employs sampling, clustering, and dynamic state reduction techniques to keep states in a large configuration space manageable. Our evaluation of four real-world highly-configurable server programs shows that ConfRL can efficiently and effectively guide software systems to achieve higher long-term performance.

Citations (3)

Summary

We haven't generated a summary for this paper yet.