Papers
Topics
Authors
Recent
2000 character limit reached

Global Adaptive Filtering Layer for Computer Vision (2010.01177v4)

Published 2 Oct 2020 in eess.IV and cs.CV

Abstract: We devise a universal adaptive neural layer to "learn" optimal frequency filter for each image together with the weights of the base neural network that performs some computer vision task. The proposed approach takes the source image in the spatial domain, automatically selects the best frequencies from the frequency domain, and transmits the inverse-transform image to the main neural network. Remarkably, such a simple add-on layer dramatically improves the performance of the main network regardless of its design. We observe that the light networks gain a noticeable boost in the performance metrics; whereas, the training of the heavy ones converges faster when our adaptive layer is allowed to "learn" alongside the main architecture. We validate the idea in four classical computer vision tasks: classification, segmentation, denoising, and erasing, considering popular natural and medical data benchmarks.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.