Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Convolution Kernel for Artificial Neural Networks (2009.06385v1)

Published 14 Sep 2020 in cs.CV and cs.NE

Abstract: Many deep neural networks are built by using stacked convolutional layers of fixed and single size (often 3$\times$3) kernels. This paper describes a method for training the size of convolutional kernels to provide varying size kernels in a single layer. The method utilizes a differentiable, and therefore backpropagation-trainable Gaussian envelope which can grow or shrink in a base grid. Our experiments compared the proposed adaptive layers to ordinary convolution layers in a simple two-layer network, a deeper residual network, and a U-Net architecture. The results in the popular image classification datasets such as MNIST, MNIST-CLUTTERED, CIFAR-10, Fashion, and ``Faces in the Wild'' showed that the adaptive kernels can provide statistically significant improvements on ordinary convolution kernels. A segmentation experiment in the Oxford-Pets dataset demonstrated that replacing a single ordinary convolution layer in a U-shaped network with a single 7$\times$7 adaptive layer can improve its learning performance and ability to generalize.

Citations (12)

Summary

We haven't generated a summary for this paper yet.