Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Recommender System based on the analysis of personality traits in Telegram social network

Published 1 Oct 2020 in cs.SI and cs.CY | (2010.00643v1)

Abstract: Accessing people's personality traits has always been a challenging task. On the other hand, acquiring personality traits based on behavioral data is one of the growing interest of human beings. Numerous researches showed that people spend a large amount of time on social networks and show behaviors that create some personality patterns in cyberspace. One of these social networks that have been widely welcomed in some countries, including Iran, is Telegram. The basis of this research is automatically identifying users' personalities based on their behavior on Telegram. For this purpose, messages from Telegram group users are extracted, and then the personality traits of each member according to the NEO Personality Inventory are identified. For personality analysis, the study is employed three approaches, including; Cosine Similarity, Bayes, and MLP algorithms. Finally, this study provides a recommender system that uses the Cosine similarity algorithm to explore and recommend relevant Telegram channels to members according to the extracted personalities. The results show a 65.42% satisfaction rate for the recommender system based on the proposed personality analysis.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.