Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Trainable Wireless Link Quality Prediction System using Camera Imagery (2009.13864v1)

Published 29 Sep 2020 in cs.NI

Abstract: Machine-learning-based prediction of future wireless link quality is an emerging technique that can potentially improve the reliability of wireless communications, especially at higher frequencies (e.g., millimeter-wave and terahertz technologies), through predictive handover and beamforming to solve line-of-sight (LOS) blockage problem. In this study, a real-time online trainable wireless link quality prediction system was proposed; the system was implemented with commercially available laptops. The proposed system collects datasets, updates a model, and infers the received power in real-time. The experimental evaluation was conducted using 5 GHz Wi-Fi, where received signal strength could be degraded by 10 dB when the LOS path was blocked by large obstacles. The experimental results demonstrate that the prediction model is updated in real-time, adapts to the change in environment, and predicts the time-varying Wi-Fi received power accurately.

Summary

We haven't generated a summary for this paper yet.