Papers
Topics
Authors
Recent
2000 character limit reached

Framework for Designing Filters of Spectral Graph Convolutional Neural Networks in the Context of Regularization Theory (2009.13801v1)

Published 29 Sep 2020 in cs.LG and stat.ML

Abstract: Graph convolutional neural networks (GCNNs) have been widely used in graph learning. It has been observed that the smoothness functional on graphs can be defined in terms of the graph Laplacian. This fact points out in the direction of using Laplacian in deriving regularization operators on graphs and its consequent use with spectral GCNN filter designs. In this work, we explore the regularization properties of graph Laplacian and proposed a generalized framework for regularized filter designs in spectral GCNNs. We found that the filters used in many state-of-the-art GCNNs can be derived as a special case of the framework we developed. We designed new filters that are associated with well-defined regularization behavior and tested their performance on semi-supervised node classification tasks. Their performance was found to be superior to that of the other state-of-the-art techniques.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.