Papers
Topics
Authors
Recent
2000 character limit reached

Fractional Ornstein-Uhlenbeck process with stochastic forcing and its applications

Published 24 Sep 2020 in math.PR | (2009.11688v1)

Abstract: We consider a fractional Ornstein-Uhlenbeck process involving a stochastic forcing term in the drift, as a solution of a linear stochastic differential equation driven by a fractional Brownian motion. For such process we specify mean and covariance functions, concentrating on their asymptotic behavior. This gives us a sort of short- or long-range dependence, under specified hypotheses on the covariance of the forcing process. Applications of this process in neuronal modeling are discussed, providing an example of a stochastic forcing term as a linear combination of Heaviside functions with random center. Simulation algorithms for the sample path of this process are finally given.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.