Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Randomized fast no-loss expert system to play tic tac toe like a human (2009.11225v2)

Published 23 Sep 2020 in cs.AI, cs.GT, cs.HC, and cs.MA

Abstract: This paper introduces a blazingly fast, no-loss expert system for Tic Tac Toe using Decision Trees called T3DT, that tries to emulate human gameplay as closely as possible. It does not make use of any brute force, minimax or evolutionary techniques, but is still always unbeatable. In order to make the gameplay more human-like, randomization is prioritized and T3DT randomly chooses one of the multiple optimal moves at each step. Since it does not need to analyse the complete game tree at any point, T3DT is exceptionally faster than any brute force or minimax algorithm, this has been shown theoretically as well as empirically from clock-time analyses in this paper. T3DT also doesn't need the data sets or the time to train an evolutionary model, making it a practical no-loss approach to play Tic Tac Toe.

Citations (2)

Summary

We haven't generated a summary for this paper yet.