Papers
Topics
Authors
Recent
Search
2000 character limit reached

Improved Quantum Boosting

Published 17 Sep 2020 in quant-ph, cs.CC, and cs.LG | (2009.08360v1)

Abstract: Boosting is a general method to convert a weak learner (which generates hypotheses that are just slightly better than random) into a strong learner (which generates hypotheses that are much better than random). Recently, Arunachalam and Maity gave the first quantum improvement for boosting, by combining Freund and Schapire's AdaBoost algorithm with a quantum algorithm for approximate counting. Their booster is faster than classical boosting as a function of the VC-dimension of the weak learner's hypothesis class, but worse as a function of the quality of the weak learner. In this paper we give a substantially faster and simpler quantum boosting algorithm, based on Servedio's SmoothBoost algorithm.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.