Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Boosting (2002.05056v2)

Published 12 Feb 2020 in quant-ph, cs.CC, and cs.LG

Abstract: Suppose we have a weak learning algorithm $\mathcal{A}$ for a Boolean-valued problem: $\mathcal{A}$ produces hypotheses whose bias $\gamma$ is small, only slightly better than random guessing (this could, for instance, be due to implementing $\mathcal{A}$ on a noisy device), can we boost the performance of $\mathcal{A}$ so that $\mathcal{A}$'s output is correct on $2/3$ of the inputs? Boosting is a technique that converts a weak and inaccurate machine learning algorithm into a strong accurate learning algorithm. The AdaBoost algorithm by Freund and Schapire (for which they were awarded the G\"odel prize in 2003) is one of the widely used boosting algorithms, with many applications in theory and practice. Suppose we have a $\gamma$-weak learner for a Boolean concept class $C$ that takes time $R(C)$, then the time complexity of AdaBoost scales as $VC(C)\cdot poly(R(C), 1/\gamma)$, where $VC(C)$ is the $VC$-dimension of $C$. In this paper, we show how quantum techniques can improve the time complexity of classical AdaBoost. To this end, suppose we have a $\gamma$-weak quantum learner for a Boolean concept class $C$ that takes time $Q(C)$, we introduce a quantum boosting algorithm whose complexity scales as $\sqrt{VC(C)}\cdot poly(Q(C),1/\gamma);$ thereby achieving a quadratic quantum improvement over classical AdaBoost in terms of $VC(C)$.

Citations (23)

Summary

We haven't generated a summary for this paper yet.