Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 56 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

ARM: A Confidence-Based Adversarial Reweighting Module for Coarse Semantic Segmentation (2009.05205v2)

Published 11 Sep 2020 in cs.CV

Abstract: Coarsely-labeled semantic segmentation annotations are easy to obtain, but therefore bear the risk of losing edge details and introducing background pixels. Impeded by the inherent noise, existing coarse annotations are only taken as a bonus for model pre-training. In this paper, we try to exploit their potentials with a confidence-based reweighting strategy. To expand, loss-based reweighting strategies usually take the high loss value to identify two completely different types of pixels, namely, valuable pixels in noise-free annotations and mislabeled pixels in noisy annotations. This makes it impossible to perform two tasks of mining valuable pixels and suppressing mislabeled pixels at the same time. However, with the help of the prediction confidence, we successfully solve this dilemma and simultaneously perform two subtasks with a single reweighting strategy. Furthermore, we generalize this strategy into an Adversarial Reweighting Module (ARM) and prove its convergence strictly. Experiments on standard datasets shows our ARM can bring consistent improvements for both coarse annotations and fine annotations. Specifically, built on top of DeepLabv3+, ARM improves the mIoU on the coarsely-labeled Cityscapes by a considerable margin and increases the mIoU on the ADE20K dataset to 47.50.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.