Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

The orthotropic $p$-Laplace eigenvalue problem of Steklov type as $p\to+\infty$ (2009.04295v3)

Published 9 Sep 2020 in math.AP

Abstract: We study the Steklov eigenvalue problem for the $\infty-$orthotropic Laplace operator defined on convex sets of $\mathbb{R}N$, with $N\geq2$, considering the limit for $p\to+\infty$ of the Steklov problem for the $p-$orthotropic Laplacian. We find a limit problem that is satisfied in the viscosity sense and a geometric characterization of the first non trivial eigenvalue. Moreover, we prove Brock-Weinstock and Weinstock type inequalities among convex sets, stating that the ball in a suitable norm maximizes the first non trivial eigenvalue for the Steklov $\infty-$orthotropic Laplacian, once we fix the volume or the anisotropic perimeter.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.