Papers
Topics
Authors
Recent
Search
2000 character limit reached

Temporal Attribute-Appearance Learning Network for Video-based Person Re-Identification

Published 9 Sep 2020 in cs.CV | (2009.04181v1)

Abstract: Video-based person re-identification aims to match a specific pedestrian in surveillance videos across different time and locations. Human attributes and appearance are complementary to each other, both of them contribute to pedestrian matching. In this work, we propose a novel Temporal Attribute-Appearance Learning Network (TALNet) for video-based person re-identification. TALNet simultaneously exploits human attributes and appearance to learn comprehensive and effective pedestrian representations from videos. It explores hard visual attention and temporal-semantic context for attributes, and spatial-temporal dependencies among body parts for appearance, to boost the learning of them. Specifically, an attribute branch network is proposed with a spatial attention block and a temporal-semantic context block for learning robust attribute representation. The spatial attention block focuses the network on corresponding regions within video frames related to each attribute, the temporal-semantic context block learns both the temporal context for each attribute across video frames and the semantic context among attributes in each video frame. The appearance branch network is designed to learn effective appearance representation from both whole body and body parts with spatial-temporal dependencies among them. TALNet leverages the complementation between attribute and appearance representations, and jointly optimizes them by multi-task learning fashion. Moreover, we annotate ID-level attributes for each pedestrian in the two commonly used video datasets. Extensive experiments on these datasets, have verified the superiority of TALNet over state-of-the-art methods.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.