Papers
Topics
Authors
Recent
Search
2000 character limit reached

CA3Net: Contextual-Attentional Attribute-Appearance Network for Person Re-Identification

Published 19 Nov 2018 in cs.CV | (1811.07544v1)

Abstract: Person re-identification aims to identify the same pedestrian across non-overlapping camera views. Deep learning techniques have been applied for person re-identification recently, towards learning representation of pedestrian appearance. This paper presents a novel Contextual-Attentional Attribute-Appearance Network (CA3Net) for person re-identification. The CA3Net simultaneously exploits the complementarity between semantic attributes and visual appearance, the semantic context among attributes, visual attention on attributes as well as spatial dependencies among body parts, leading to discriminative and robust pedestrian representation. Specifically, an attribute network within CA3Net is designed with an Attention-LSTM module. It concentrates the network on latent image regions related to each attribute as well as exploits the semantic context among attributes by a LSTM module. An appearance network is developed to learn appearance features from the full body, horizontal and vertical body parts of pedestrians with spatial dependencies among body parts. The CA3Net jointly learns the attribute and appearance features in a multi-task learning manner, generating comprehensive representation of pedestrians. Extensive experiments on two challenging benchmarks, i.e., Market-1501 and DukeMTMC-reID datasets, have demonstrated the effectiveness of the proposed approach.

Citations (23)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.