Winning Strategy for the Multiplayer and Multialliance Zeckendorf Games (2009.03708v2)
Abstract: Edouard Zeckendorf proved that every positive integer $n$ can be uniquely written \cite{Ze} as the sum of non-adjacent Fibonacci numbers, known as the Zeckendorf decomposition. Based on Zeckendorf's decomposition, we have the Zeckendorf game for multiple players. We show that when the Zeckendorf game has at least $3$ players, none of the players have a winning strategy for $n\geq 5$. Then we extend the multi-player game to the multi-alliance game, finding some interesting situations in which no alliance has a winning strategy. This includes the two-alliance game, and some cases in which one alliance always has a winning strategy. %We examine what alliances, or combinations of players, can win, and what size they have to be in order to do so. We also find necessary structural constraints on what alliances our method of proof can show to be winning. Furthermore, we find some alliance structures which must have winning strategies. %We also extend the Generalized Zeckendorf game from $2$-players to multiple players. We find that when the game has $3$ players, player $2$ never has a winning strategy for any significantly large $n$. We also find that when the game has at least $4$ players, no player has a winning strategy for any significantly large $n$.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.