Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fair and Useful Cohort Selection (2009.02207v2)

Published 4 Sep 2020 in cs.DS and cs.LG

Abstract: A challenge in fair algorithm design is that, while there are compelling notions of individual fairness, these notions typically do not satisfy desirable composition properties, and downstream applications based on fair classifiers might not preserve fairness. To study fairness under composition, Dwork and Ilvento introduced an archetypal problem called fair-cohort-selection problem, where a single fair classifier is composed with itself to select a group of candidates of a given size, and proposed a solution to this problem. In this work we design algorithms for selecting cohorts that not only preserve fairness, but also maximize the utility of the selected cohort under two notions of utility that we introduce and motivate. We give optimal (or approximately optimal) polynomial-time algorithms for this problem in both an offline setting, and an online setting where candidates arrive one at a time and are classified as they arrive.

Citations (2)

Summary

We haven't generated a summary for this paper yet.