Papers
Topics
Authors
Recent
2000 character limit reached

Noise-Aware Texture-Preserving Low-Light Enhancement (2009.01385v1)

Published 2 Sep 2020 in cs.CV and eess.IV

Abstract: A simple and effective low-light image enhancement method based on a noise-aware texture-preserving retinex model is proposed in this work. The new method, called NATLE, attempts to strike a balance between noise removal and natural texture preservation through a low-complexity solution. Its cost function includes an estimated piece-wise smooth illumination map and a noise-free texture-preserving reflectance map. Afterwards, illumination is adjusted to form the enhanced image together with the reflectance map. Extensive experiments are conducted on common low-light image enhancement datasets to demonstrate the superior performance of NATLE.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.