Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 56 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The Effect of Various Strengths of Noises and Data Augmentations on Classification of Short Single-Lead ECG Signals Using Deep Neural Networks (2009.01192v1)

Published 14 Aug 2020 in eess.SP, cs.CV, cs.LG, and eess.IV

Abstract: Due to the multiple imperfections during the signal acquisition, Electrocardiogram (ECG) datasets are typically contaminated with numerous types of noise, like salt and pepper and baseline drift. These datasets may contain different recordings with various types of noise [1] and thus, denoising may not be the easiest task. Furthermore, usually, the number of labeled bio-signals is very limited for a proper classification task.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.