Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ADAIL: Adaptive Adversarial Imitation Learning (2008.12647v1)

Published 23 Aug 2020 in cs.LG and cs.AI

Abstract: We present the ADaptive Adversarial Imitation Learning (ADAIL) algorithm for learning adaptive policies that can be transferred between environments of varying dynamics, by imitating a small number of demonstrations collected from a single source domain. This is an important problem in robotic learning because in real world scenarios 1) reward functions are hard to obtain, 2) learned policies from one domain are difficult to deploy in another due to varying source to target domain statistics, 3) collecting expert demonstrations in multiple environments where the dynamics are known and controlled is often infeasible. We address these constraints by building upon recent advances in adversarial imitation learning; we condition our policy on a learned dynamics embedding and we employ a domain-adversarial loss to learn a dynamics-invariant discriminator. The effectiveness of our method is demonstrated on simulated control tasks with varying environment dynamics and the learned adaptive agent outperforms several recent baselines.

Citations (7)

Summary

We haven't generated a summary for this paper yet.