Papers
Topics
Authors
Recent
2000 character limit reached

Normal surface singularities with an integral homology sphere link related to space monomial curves with a plane semigroup (2008.10918v2)

Published 25 Aug 2020 in math.AG

Abstract: In this article, we consider an infinite family of normal surface singularities with an integral homology sphere link which is related to the family of space monomial curves with a plane semigroup. These monomial curves appear as the special fibers of equisingular families of curves whose generic fibers are a complex plane branch, and the related surface singularities appear in a proof of the monodromy conjecture for these curves. To investigate whether the link of a normal surface singularity is an integral homology sphere, one can use a characterization that depends on the determinant of the intersection matrix of a (partial) resolution. To study our family, we apply this characterization with a partial toric resolution of our singularities constructed as a sequence of weighted blow-ups.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.