Papers
Topics
Authors
Recent
Search
2000 character limit reached

CnGAN: Generative Adversarial Networks for Cross-network user preference generation for non-overlapped users

Published 25 Aug 2020 in cs.LG, cs.AI, cs.IR, and stat.ML | (2008.10845v1)

Abstract: A major drawback of cross-network recommender solutions is that they can only be applied to users that are overlapped across networks. Thus, the non-overlapped users, which form the majority of users are ignored. As a solution, we propose CnGAN, a novel multi-task learning based, encoder-GAN-recommender architecture. The proposed model synthetically generates source network user preferences for non-overlapped users by learning the mapping from target to source network preference manifolds. The resultant user preferences are used in a Siamese network based neural recommender architecture. Furthermore, we propose a novel user based pairwise loss function for recommendations using implicit interactions to better guide the generation process in the multi-task learning environment.We illustrate our solution by generating user preferences on the Twitter source network for recommendations on the YouTube target network. Extensive experiments show that the generated preferences can be used to improve recommendations for non-overlapped users. The resultant recommendations achieve superior performance compared to the state-of-the-art cross-network recommender solutions in terms of accuracy, novelty and diversity.

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.