Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

On the $k$ Nearest-Neighbor Path Distance from the Typical Intersection in the Manhattan Poisson Line Cox Process (2008.10670v2)

Published 24 Aug 2020 in cs.NI

Abstract: In this paper, we consider a Cox point process driven by the Manhattan Poisson line process. We calculate the exact cumulative distribution function (CDF) of the path distance (L1 norm) between a randomly selected intersection and the $k$-th nearest node of the Cox process. The CDF is expressed as a sum over the integer partition function $p!\left(k\right)$, which allows us to numerically evaluate the CDF in a simple manner for practical values of $k$. These distance distributions can be used to study the $k$-coverage of broadcast signals transmitted from a \ac{RSU} located at an intersection in intelligent transport systems (ITS). Also, they can be insightful for network dimensioning in vehicle-to-everything (V2X) systems, because they can yield the exact distribution of network load within a cell, provided that the \ac{RSU} is placed at an intersection. Finally, they can find useful applications in other branches of science like spatial databases, emergency response planning, and districting. We corroborate the applicability of our distance distribution model using the map of an urban area.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.