Shortest Path Distance in Manhattan Poisson Line Cox Process (1811.11332v3)
Abstract: While the Euclidean distance characteristics of the Poisson line Cox process (PLCP) have been investigated in the literature, the analytical characterization of the path distances is still an open problem. In this paper, we solve this problem for the stationary Manhattan Poisson line Cox process (MPLCP), which is a variant of the PLCP. Specifically, we derive the exact cumulative distribution function (CDF) for the length of the shortest path to the nearest point of the MPLCP in the sense of path distance measured from two reference points: (i) the typical intersection of the Manhattan Poisson line process (MPLP), and (ii) the typical point of the MPLCP. We also discuss the application of these results in infrastructure planning, wireless communication, and transportation networks.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.