Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 36 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 66 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Adaptive 3D convolutional neural network-based reconstruction method for 3D coherent diffraction imaging (2008.10094v1)

Published 23 Aug 2020 in physics.comp-ph, math.OC, and physics.optics

Abstract: We present a novel adaptive machine-learning based approach for reconstructing three-dimensional (3D) crystals from coherent diffraction imaging (CDI). We represent the crystals using spherical harmonics (SH) and generate corresponding synthetic diffraction patterns. We utilize 3D convolutional neural networks (CNN) to learn a mapping between 3D diffraction volumes and the SH which describe the boundary of the physical volumes from which they were generated. We use the 3D CNN-predicted SH coefficients as the initial guesses which are then fine tuned using adaptive model independent feedback for improved accuracy.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube