Papers
Topics
Authors
Recent
Search
2000 character limit reached

A constrained transport divergence-free finite element method for Incompressible MHD equations

Published 21 Aug 2020 in math.NA and cs.NA | (2008.09244v1)

Abstract: In this paper we study finite element method for three-dimensional incompressible resistive magnetohydrodynamic equations, in which the velocity, the current density, and the magnetic induction are divergence-free. It is desirable that the discrete solutions should also satisfy divergence-free conditions exactly especially for the momentum equations. Inspired by constrained transport method,we devise a new stable mixed finite element method that can achieve the goal. We also prove the well-posedness of the discrete solutions. To solve the resulting linear algebraic equations, we propose a GMRES solver with an augmented Lagrangian block preconditioner. By numerical experiments, we verify the theoretical results and demonstrate the quasi-optimality of the discrete solver with respect to the number of degrees of freedom

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.