Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Locally Divergence-Free Oscillation-Eliminating Discontinuous Galerkin Method for Ideal Magnetohydrodynamic Equations

Published 22 Apr 2024 in math.NA and cs.NA | (2404.14274v1)

Abstract: Numerical simulations of ideal compressible magnetohydrodynamic (MHD) equations are challenging, as the solutions are required to be magnetic divergence-free for general cases as well as oscillation-free for cases involving discontinuities. To overcome these difficulties, we develop a locally divergence-free oscillation-eliminating discontinuous Galerkin (LDF-OEDG) method for ideal compressible MHD equations. In the LDF-OEDG method, the numerical solution is advanced in time by using a strong stability preserving Runge-Kutta scheme. Following the solution update in each Runge-Kutta stage, an oscillation-eliminating (OE) procedure is performed to suppress spurious oscillations near discontinuities by damping the modal coefficients of the numerical solution. Subsequently, on each element, the magnetic filed of the oscillation-free DG solution is projected onto a local divergence-free space, to satisfy the divergence-free condition. The OE procedure and the LDF projection are fully decoupled from the Runge-Kutta stage update, and can be non-intrusively integrated into existing DG codes as independent modules. The damping equation of the OE procedure can be solved exactly, making the LDF-OEDG method remain stable under normal CFL conditions. These features enable a straightforward implementation of a high-order LDF-OEDG solver, which can be used to efficiently simulate the ideal compressible MHD equations. Numerical results for benchmark cases demonstrate the high-order accuracy, strong shock capturing capability and robustness of the LDF-OEDG method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. Balsara, D.S.: Second order accurate schemes for magnetohydrodynamics with divergence-free reconstruction. ApJS 151(1), 149 (2004)
  2. J. Comput. Phys. 149, 270–292 (1999)
  3. J. Comput. Phys. 229, 1810–1827 (2010)
  4. J. Comput. Phys. 35(3), 426–430 (1980)
  5. SIAM J. Sci. Comput. 37(4), A1825–A1845 (2015)
  6. J. Comput. Phys. 268, 302–325 (2014)
  7. J Comput. Phys. 194(2), 588–610 (2004)
  8. J. Comput. Phys. 141, 199–224 (1998)
  9. J. Comput. Phys. 142(2), 331–369 (1998)
  10. J. Comput. Phys. 175(2), 645–673 (2002)
  11. DeVore, C.R.: Flux-corrected transport techniques for multidimensional compressible magnetohydrodynamics. J. Comput. Phys. 92, 142–160 (1991)
  12. Astrophys. J. 332, 659–677 (1988)
  13. J. Sci. Comput. 77, 1621–1659 (2018)
  14. J. Comput. Phys. 205, 509–539 (2005)
  15. Godunov, S.K.: Symmetric form of the equations of magnetohydrodynamics. Numer. Meth. Mech. Continuum Med. 1, 26–34 (1972)
  16. J. Geophys. Res. 99(A11), 21525–21539 (1994)
  17. J. Comput. Phys. 230(10), 3803–3829 (2011)
  18. ESAIM Math. Model. Numer. Anal. 46, A623–A651 (2013)
  19. Springer Science & Business Media (2007)
  20. Numer. Math. 126, 103–151 (2014)
  21. J. Comput. Phys. 150(1), 97–127 (1999)
  22. J. Comput. Phys. 150, 561–594 (1999)
  23. J. Sci. Comput. 22, 413–442 (2005)
  24. J. Comput. Phys. 231(6), 2655–2675 (2012)
  25. J. Comput. Phys. 230(12), 4828–4847 (2011)
  26. Comput. & Fluids 96, 368–376 (2014)
  27. J. Comput. Phys. 447, 110694 (2021)
  28. Commun. Comput. Phys. 26(3) (2019)
  29. SIAM J. Sci. Comput. 44(1), A230–A259 (2022)
  30. J. Comput. Phys. 195, 17–48 (2004)
  31. SIAM J. Numer. Anal. 59(3), 1299–1324 (2021)
  32. SIAM J. Numer. Anal. 30, 321–342 (1993)
  33. Numer. Meth. Part. Diff. Equ. 28, 1840–1868 (2012)
  34. ESAIM Math. Model. Numer. Anal. 46, 661–680 (2012)
  35. J. Fluid Mech. 90(1), 129–143 (1979)
  36. https://arxiv.dosf.top/abs/2310.04807 (2023)
  37. SIAM J. Sci. Comput. 28, 1766–1797 (2006)
  38. J. Comput. Phys. 77(2), 439–471 (1988)
  39. Tóth, G.: The ∇⋅𝐁=0⋅∇𝐁0\nabla\cdot\mathbf{B}=0∇ ⋅ bold_B = 0 constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161, 605–652 (2000)
  40. SIAM J. Sci. Comput. 40(5), B1302–B1329 (2018)
  41. Numer. Math. 142(4), 995–1047 (2019)
  42. Numer. Math. 148(3), 699–741 (2021)
  43. Appl. Numer. Math. 56, 444–458 (2006)
  44. Commun. Comput. Phys. 19, 841–880 (2016)
  45. J. Comput. Sci. 4, 80–91 (2013)
  46. Astrophys. J. Suppl. Ser. 257(2), 32 (2021)
  47. J. Comput. Phys. 232, 397–415 (2013)
  48. J. Comput. Phys. 227(9), 4330–4353 (2008)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.