A Locally Divergence-Free Oscillation-Eliminating Discontinuous Galerkin Method for Ideal Magnetohydrodynamic Equations
Abstract: Numerical simulations of ideal compressible magnetohydrodynamic (MHD) equations are challenging, as the solutions are required to be magnetic divergence-free for general cases as well as oscillation-free for cases involving discontinuities. To overcome these difficulties, we develop a locally divergence-free oscillation-eliminating discontinuous Galerkin (LDF-OEDG) method for ideal compressible MHD equations. In the LDF-OEDG method, the numerical solution is advanced in time by using a strong stability preserving Runge-Kutta scheme. Following the solution update in each Runge-Kutta stage, an oscillation-eliminating (OE) procedure is performed to suppress spurious oscillations near discontinuities by damping the modal coefficients of the numerical solution. Subsequently, on each element, the magnetic filed of the oscillation-free DG solution is projected onto a local divergence-free space, to satisfy the divergence-free condition. The OE procedure and the LDF projection are fully decoupled from the Runge-Kutta stage update, and can be non-intrusively integrated into existing DG codes as independent modules. The damping equation of the OE procedure can be solved exactly, making the LDF-OEDG method remain stable under normal CFL conditions. These features enable a straightforward implementation of a high-order LDF-OEDG solver, which can be used to efficiently simulate the ideal compressible MHD equations. Numerical results for benchmark cases demonstrate the high-order accuracy, strong shock capturing capability and robustness of the LDF-OEDG method.
- Balsara, D.S.: Second order accurate schemes for magnetohydrodynamics with divergence-free reconstruction. ApJS 151(1), 149 (2004)
- J. Comput. Phys. 149, 270–292 (1999)
- J. Comput. Phys. 229, 1810–1827 (2010)
- J. Comput. Phys. 35(3), 426–430 (1980)
- SIAM J. Sci. Comput. 37(4), A1825–A1845 (2015)
- J. Comput. Phys. 268, 302–325 (2014)
- J Comput. Phys. 194(2), 588–610 (2004)
- J. Comput. Phys. 141, 199–224 (1998)
- J. Comput. Phys. 142(2), 331–369 (1998)
- J. Comput. Phys. 175(2), 645–673 (2002)
- DeVore, C.R.: Flux-corrected transport techniques for multidimensional compressible magnetohydrodynamics. J. Comput. Phys. 92, 142–160 (1991)
- Astrophys. J. 332, 659–677 (1988)
- J. Sci. Comput. 77, 1621–1659 (2018)
- J. Comput. Phys. 205, 509–539 (2005)
- Godunov, S.K.: Symmetric form of the equations of magnetohydrodynamics. Numer. Meth. Mech. Continuum Med. 1, 26–34 (1972)
- J. Geophys. Res. 99(A11), 21525–21539 (1994)
- J. Comput. Phys. 230(10), 3803–3829 (2011)
- ESAIM Math. Model. Numer. Anal. 46, A623–A651 (2013)
- Springer Science & Business Media (2007)
- Numer. Math. 126, 103–151 (2014)
- J. Comput. Phys. 150(1), 97–127 (1999)
- J. Comput. Phys. 150, 561–594 (1999)
- J. Sci. Comput. 22, 413–442 (2005)
- J. Comput. Phys. 231(6), 2655–2675 (2012)
- J. Comput. Phys. 230(12), 4828–4847 (2011)
- Comput. & Fluids 96, 368–376 (2014)
- J. Comput. Phys. 447, 110694 (2021)
- Commun. Comput. Phys. 26(3) (2019)
- SIAM J. Sci. Comput. 44(1), A230–A259 (2022)
- J. Comput. Phys. 195, 17–48 (2004)
- SIAM J. Numer. Anal. 59(3), 1299–1324 (2021)
- SIAM J. Numer. Anal. 30, 321–342 (1993)
- Numer. Meth. Part. Diff. Equ. 28, 1840–1868 (2012)
- ESAIM Math. Model. Numer. Anal. 46, 661–680 (2012)
- J. Fluid Mech. 90(1), 129–143 (1979)
- https://arxiv.dosf.top/abs/2310.04807 (2023)
- SIAM J. Sci. Comput. 28, 1766–1797 (2006)
- J. Comput. Phys. 77(2), 439–471 (1988)
- Tóth, G.: The ∇⋅𝐁=0⋅∇𝐁0\nabla\cdot\mathbf{B}=0∇ ⋅ bold_B = 0 constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161, 605–652 (2000)
- SIAM J. Sci. Comput. 40(5), B1302–B1329 (2018)
- Numer. Math. 142(4), 995–1047 (2019)
- Numer. Math. 148(3), 699–741 (2021)
- Appl. Numer. Math. 56, 444–458 (2006)
- Commun. Comput. Phys. 19, 841–880 (2016)
- J. Comput. Sci. 4, 80–91 (2013)
- Astrophys. J. Suppl. Ser. 257(2), 32 (2021)
- J. Comput. Phys. 232, 397–415 (2013)
- J. Comput. Phys. 227(9), 4330–4353 (2008)
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.