Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Agent-Based Simulation Framework with Applications to Reinforcement Learning and the Study of Trading Latency Effects (2008.07871v3)

Published 18 Aug 2020 in q-fin.CP, cs.MA, and q-fin.TR

Abstract: We introduce a new software toolbox for agent-based simulation. Facilitating rapid prototyping by offering a user-friendly Python API, its core rests on an efficient C++ implementation to support simulation of large-scale multi-agent systems. Our software environment benefits from a versatile message-driven architecture. Originally developed to support research on financial markets, it offers the flexibility to simulate a wide-range of different (easily customisable) market rules and to study the effect of auxiliary factors, such as delays, on the market dynamics. As a simple illustration, we employ our toolbox to investigate the role of the order processing delay in normal trading and for the scenario of a significant price change. Owing to its general architecture, our toolbox can also be employed as a generic multi-agent system simulator. We provide an example of such a non-financial application by simulating a mechanism for the coordination of no-regret learning agents in a multi-agent network routing scenario previously proposed in the literature.

Citations (7)

Summary

We haven't generated a summary for this paper yet.