Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Metaheuristic optimization of power and energy systems: underlying principles and main issues of the 'rush to heuristics' (2008.07491v1)

Published 17 Aug 2020 in cs.AI and cs.NE

Abstract: In the power and energy systems area, a progressive increase of literature contributions containing applications of metaheuristic algorithms is occurring. In many cases, these applications are merely aimed at proposing the testing of an existing metaheuristic algorithm on a specific problem, claiming that the proposed method is better than other methods based on weak comparisons. This 'rush to heuristics' does not happen in the evolutionary computation domain, where the rules for setting up rigorous comparisons are stricter, but are typical of the domains of application of the metaheuristics. This paper considers the applications to power and energy systems, and aims at providing a comprehensive view of the main issues concerning the use of metaheuristics for global optimization problems. A set of underlying principles that characterize the metaheuristic algorithms is presented. The customization of metaheuristic algorithms to fit the constraints of specific problems is discussed. Some weaknesses and pitfalls found in literature contributions are identified, and specific guidelines are provided on how to prepare sound contributions on the application of metaheuristic algorithms to specific problems.

Citations (38)

Summary

We haven't generated a summary for this paper yet.