Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Network Intrusion Detection Using Wrapper-based Decision Tree for Feature Selection (2008.07405v1)

Published 11 Aug 2020 in cs.CR and cs.LG

Abstract: One of the key challenges of ML based intrusion detection system (IDS) is the expensive computational complexity which is largely due to redundant, incomplete, and irrelevant features contain in the IDS datasets. To overcome such challenge and ensure building an efficient and more accurate IDS models, many researchers utilize preprocessing techniques such as normalization and feature selection in a hybrid modeling approach. In this work, we propose a hybrid IDS modeling approach with an algorithm for feature selection (FS) and another for building an IDS. The FS algorithm is a wrapper-based with a decision tree as the feature evaluator. The propose FS method is used in combination with some selected ML algorithms to build IDS models using the UNSW-NB15 dataset. Some IDS models are built as a baseline in a single modeling approach using the full features of the dataset. We evaluate the effectiveness of our propose method by comparing it with the baseline models and also with state-of-the-art works. Our method achieves the best DR of 97.95% and shown to be quite effective in comparison to state-of-the-art works. We, therefore, recommend its usage especially in IDS modeling with the UNSW-NB15 dataset.

Citations (18)

Summary

We haven't generated a summary for this paper yet.