Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Category-Level 3D Non-Rigid Registration from Single-View RGB Images (2008.07203v1)

Published 17 Aug 2020 in cs.CV and cs.RO

Abstract: In this paper, we propose a novel approach to solve the 3D non-rigid registration problem from RGB images using Convolutional Neural Networks (CNNs). Our objective is to find a deformation field (typically used for transferring knowledge between instances, e.g., grasping skills) that warps a given 3D canonical model into a novel instance observed by a single-view RGB image. This is done by training a CNN that infers a deformation field for the visible parts of the canonical model and by employing a learned shape (latent) space for inferring the deformations of the occluded parts. As result of the registration, the observed model is reconstructed. Because our method does not need depth information, it can register objects that are typically hard to perceive with RGB-D sensors, e.g. with transparent or shiny surfaces. Even without depth data, our approach outperforms the Coherent Point Drift (CPD) registration method for the evaluated object categories.

Citations (3)

Summary

We haven't generated a summary for this paper yet.