Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

SECODA: Segmentation- and Combination-Based Detection of Anomalies (2008.06869v1)

Published 16 Aug 2020 in cs.DB, cs.AI, cs.LG, and stat.OT

Abstract: This study introduces SECODA, a novel general-purpose unsupervised non-parametric anomaly detection algorithm for datasets containing continuous and categorical attributes. The method is guaranteed to identify cases with unique or sparse combinations of attribute values. Continuous attributes are discretized repeatedly in order to correctly determine the frequency of such value combinations. The concept of constellations, exponentially increasing weights and discretization cut points, as well as a pruning heuristic are used to detect anomalies with an optimal number of iterations. Moreover, the algorithm has a low memory imprint and its runtime performance scales linearly with the size of the dataset. An evaluation with simulated and real-life datasets shows that this algorithm is able to identify many different types of anomalies, including complex multidimensional instances. An evaluation in terms of a data quality use case with a real dataset demonstrates that SECODA can bring relevant and practical value to real-world settings.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.