Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hausdorff operators on Fock Spaces (2008.06684v2)

Published 15 Aug 2020 in math.FA

Abstract: Let $\mu$ be a positive Borel measure on the positive real axis. We study the integral operator $$ \mathcal{H}{\mu}(f)(z)=\int{0}{\infty}\frac{1}{t}f\left(\frac{z}{t}\right)\,d\mu(t),\quad z\in \mathbb{C}\,, $$ acting on the Fock spaces $F{p}_{\alpha}$, $p\in [1,\infty],\,\alpha >0$. Its action is easily seen to be a coefficient multiplication by the moment sequence $$ \mu_n= \int_{1}{\infty}\frac{1}{t{n+1}}\,d\mu(t). $$ We prove that \begin{equation*} ||\mathcal{H}{\mu}||{F{p}_{\alpha}\to F{p}{\alpha}}=\sup{n\in\mathbb{N}}\mu_n,\,\,\,\,\,1\leq p\leq \infty\,\,. \end{equation*} A little-o,condition describes the compactness of $\mathcal{H}{\mu}$ on every $F{p}{\alpha},\,p\in (1,\infty )$. In addition, we completely characterize the Schatten class membership of $\mathcal{H}_{\mu}$.

Summary

We haven't generated a summary for this paper yet.