Generalized Hilbert Operator Acting on Hardy Spaces (2410.20435v2)
Abstract: Let $\alpha>0$ and $\mu$ be a positive Borel measure on the interval $[0,1)$. The Hankel matrix $\mathcal{H}{\mu,\alpha}=(\mu{n,k,\alpha}){n,k\ge0}$ with entries $\mu{n,k,\alpha}=\int_{[0,1)}{}\frac{\Gamma(n+\alpha)}{\Gamma(n+1)\Gamma(\alpha)}t{n+k}d\mu(t)$, induces, formally, the generalized-Hilbert operator as $$ \mathcal{H}{\mu,\alpha}\left ( f \right ) \left ( z \right ) =\sum{n=0}{\infty} \left (\sum_{k=0}{\infty} \mu_{n,k,\alpha}a_k \right )zn,z\in\mathbb{D} $$ where $f(z)={\textstyle \sum_{k=0}{\infty }} a_kzk$ is an analytic function in $\mathbb{D}$. This article is devoted study the measures $\mu$ for which $\mathcal{H}{\mu,\alpha }$ is a bounded(resp., compact) operator from $Hp(0<p\le1)$ into $Hp(1\le q<\infty)$. Then, we also study the analogous problem in the Hardy spaces $Hp(1\le p\le2)$. Finally, we obtain the essential norm of $\mathcal{H}{\mu,\alpha}$ from $Hp(0<p\le1)$ into $Hp(1\le q<\infty)$.