Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantification of BERT Diagnosis Generalizability Across Medical Specialties Using Semantic Dataset Distance (2008.06606v3)

Published 14 Aug 2020 in cs.CL

Abstract: Deep learning models in healthcare may fail to generalize on data from unseen corpora. Additionally, no quantitative metric exists to tell how existing models will perform on new data. Previous studies demonstrated that NLP models of medical notes generalize variably between institutions, but ignored other levels of healthcare organization. We measured SciBERT diagnosis sentiment classifier generalizability between medical specialties using EHR sentences from MIMIC-III. Models trained on one specialty performed better on internal test sets than mixed or external test sets (mean AUCs 0.92, 0.87, and 0.83, respectively; p = 0.016). When models are trained on more specialties, they have better test performances (p < 1e-4). Model performance on new corpora is directly correlated to the similarity between train and test sentence content (p < 1e-4). Future studies should assess additional axes of generalization to ensure deep learning models fulfil their intended purpose across institutions, specialties, and practices.

Citations (11)

Summary

We haven't generated a summary for this paper yet.