Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weakly supervised cross-domain alignment with optimal transport (2008.06597v1)

Published 14 Aug 2020 in cs.CV

Abstract: Cross-domain alignment between image objects and text sequences is key to many visual-language tasks, and it poses a fundamental challenge to both computer vision and natural language processing. This paper investigates a novel approach for the identification and optimization of fine-grained semantic similarities between image and text entities, under a weakly-supervised setup, improving performance over state-of-the-art solutions. Our method builds upon recent advances in optimal transport (OT) to resolve the cross-domain matching problem in a principled manner. Formulated as a drop-in regularizer, the proposed OT solution can be efficiently computed and used in combination with other existing approaches. We present empirical evidence to demonstrate the effectiveness of our approach, showing how it enables simpler model architectures to outperform or be comparable with more sophisticated designs on a range of vision-language tasks.

Citations (7)

Summary

We haven't generated a summary for this paper yet.