Papers
Topics
Authors
Recent
2000 character limit reached

IGANI: Iterative Generative Adversarial Networks for Imputation with Application to Traffic Data

Published 11 Aug 2020 in stat.ML, cs.LG, and stat.CO | (2008.04847v3)

Abstract: Increasing use of sensor data in intelligent transportation systems calls for accurate imputation algorithms that can enable reliable traffic management in the occasional absence of data. As one of the effective imputation approaches, generative adversarial networks (GANs) are implicit generative models that can be used for data imputation, which is formulated as an unsupervised learning problem. This work introduces a novel iterative GAN architecture, called Iterative Generative Adversarial Networks for Imputation (IGANI), for data imputation. IGANI imputes data in two steps and maintains the invertibility of the generative imputer, which will be shown to be a sufficient condition for the convergence of the proposed GAN-based imputation. The performance of our proposed method is evaluated on (1) the imputation of traffic speed data collected in the city of Guangzhou in China, and the training of short-term traffic prediction models using imputed data, and (2) the imputation of multi-variable traffic data of highways in Portland-Vancouver metropolitan region which includes volume, occupancy, and speed with different missing rates for each of them. It is shown that our proposed algorithm mostly produces more accurate results compared to those of previous GAN-based imputation architectures.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.