Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extended Missing Data Imputation via GANs for Ranking Applications (2011.02089v3)

Published 4 Nov 2020 in stat.ML, cs.LG, and stat.AP

Abstract: We propose Conditional Imputation GAN, an extended missing data imputation method based on Generative Adversarial Networks (GANs). The motivating use case is learning-to-rank, the cornerstone of modern search, recommendation system, and information retrieval applications. Empirical ranking datasets do not always follow standard Gaussian distributions or Missing Completely At Random (MCAR) mechanism, which are standard assumptions of classic missing data imputation methods. Our methodology provides a simple solution that offers compatible imputation guarantees while relaxing assumptions for missing mechanisms and sidesteps approximating intractable distributions to improve imputation quality. We prove that the optimal GAN imputation is achieved for Extended Missing At Random (EMAR) and Extended Always Missing At Random (EAMAR) mechanisms, beyond the naive MCAR. Our method demonstrates the highest imputation quality on the open-source Microsoft Research Ranking (MSR) Dataset and a synthetic ranking dataset compared to state-of-the-art benchmarks and across various feature distributions. Using a proprietary Amazon Search ranking dataset, we also demonstrate comparable ranking quality metrics for ranking models trained on GAN-imputed data compared to ground-truth data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Grace Deng (4 papers)
  2. Cuize Han (5 papers)
  3. David S. Matteson (58 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.