Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Community recovery in non-binary and temporal stochastic block models (2008.04790v5)

Published 11 Aug 2020 in math.ST, cs.LG, math.PR, and stat.TH

Abstract: This article studies the estimation of latent community memberships from pairwise interactions in a network of $N$ nodes, where the observed interactions can be of arbitrary type, including binary, categorical, and vector-valued, and not excluding even more general objects such as time series or spatial point patterns. As a generative model for such data, we introduce a stochastic block model with a general measurable interaction space $\mathcal S$, for which we derive information-theoretic bounds for the minimum achievable error rate. These bounds yield sharp criteria for the existence of consistent and strongly consistent estimators in terms of data sparsity, statistical similarity between intra- and inter-block interaction distributions, and the shape and size of the interaction space. The general framework makes it possible to study temporal and multiplex networks with $\mathcal S = {0,1}T$, in settings where both $N \to \infty$ and $T \to \infty$, and the temporal interaction patterns are correlated over time. For temporal Markov interactions, we derive sharp consistency thresholds. We also present fast online estimation algorithms which fully utilise the non-binary nature of the observed data. Numerical experiments on synthetic and real data show that these algorithms rapidly produce accurate estimates even for very sparse data arrays.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.