Papers
Topics
Authors
Recent
2000 character limit reached

Measures of Complexity for Large Scale Image Datasets (2008.04431v1)

Published 10 Aug 2020 in cs.CV

Abstract: Large scale image datasets are a growing trend in the field of machine learning. However, it is hard to quantitatively understand or specify how various datasets compare to each other - i.e., if one dataset is more complex or harder to ``learn'' with respect to a deep-learning based network. In this work, we build a series of relatively computationally simple methods to measure the complexity of a dataset. Furthermore, we present an approach to demonstrate visualizations of high dimensional data, in order to assist with visual comparison of datasets. We present our analysis using four datasets from the autonomous driving research community - Cityscapes, IDD, BDD and Vistas. Using entropy based metrics, we present a rank-order complexity of these datasets, which we compare with an established rank-order with respect to deep learning.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.