Weakly supervised training of universal visual concepts for multi-domain semantic segmentation
Abstract: Deep supervised models have an unprecedented capacity to absorb large quantities of training data. Hence, training on multiple datasets becomes a method of choice towards strong generalization in usual scenes and graceful performance degradation in edge cases. Unfortunately, different datasets often have incompatible labels. For instance, the Cityscapes road class subsumes all driving surfaces, while Vistas defines separate classes for road markings, manholes etc. Furthermore, many datasets have overlapping labels. For instance, pickups are labeled as trucks in VIPER, cars in Vistas, and vans in ADE20k. We address this challenge by considering labels as unions of universal visual concepts. This allows seamless and principled learning on multi-domain dataset collections without requiring any relabeling effort. Our method achieves competitive within-dataset and cross-dataset generalization, as well as ability to learn visual concepts which are not separately labeled in any of the training datasets. Experiments reveal competitive or state-of-the-art performance on two multi-domain dataset collections and on the WildDash 2 benchmark.
- Fully Convolutional Networks for Semantic Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(4):640–651. 10.1109/TPAMI.2016.2572683. (2) Rota Bulò S, Porzi L, Kontschieder P. In-place activated batchnorm for memory-optimized training of dnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2018. p. 5639–5647. (3) Oršić M, Šegvić S. Efficient semantic segmentation with pyramidal fusion. Pattern Recognition. 2021;p. 107611. (4) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. p. 1280–1289. (5) Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, et al. The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 3213–3223. (6) Everingham M, Gool L, Williams CK, Winn J, Zisserman A. The Pascal Visual Object Classes (VOC) Challenge. Int J Comp Vis. 2010;88:303–338. (7) Neuhold G, Ollmann T, Rota Bulò S, Kontschieder P. Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: ICCV; 2017. p. 5000–5009. (8) Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Rota Bulò S, Porzi L, Kontschieder P. In-place activated batchnorm for memory-optimized training of dnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2018. p. 5639–5647. (3) Oršić M, Šegvić S. Efficient semantic segmentation with pyramidal fusion. Pattern Recognition. 2021;p. 107611. (4) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. p. 1280–1289. (5) Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, et al. The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 3213–3223. (6) Everingham M, Gool L, Williams CK, Winn J, Zisserman A. The Pascal Visual Object Classes (VOC) Challenge. Int J Comp Vis. 2010;88:303–338. (7) Neuhold G, Ollmann T, Rota Bulò S, Kontschieder P. Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: ICCV; 2017. p. 5000–5009. (8) Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Oršić M, Šegvić S. Efficient semantic segmentation with pyramidal fusion. Pattern Recognition. 2021;p. 107611. (4) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. p. 1280–1289. (5) Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, et al. The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 3213–3223. (6) Everingham M, Gool L, Williams CK, Winn J, Zisserman A. The Pascal Visual Object Classes (VOC) Challenge. Int J Comp Vis. 2010;88:303–338. (7) Neuhold G, Ollmann T, Rota Bulò S, Kontschieder P. Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: ICCV; 2017. p. 5000–5009. (8) Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. p. 1280–1289. (5) Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, et al. The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 3213–3223. (6) Everingham M, Gool L, Williams CK, Winn J, Zisserman A. The Pascal Visual Object Classes (VOC) Challenge. Int J Comp Vis. 2010;88:303–338. (7) Neuhold G, Ollmann T, Rota Bulò S, Kontschieder P. Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: ICCV; 2017. p. 5000–5009. (8) Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, et al. The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 3213–3223. (6) Everingham M, Gool L, Williams CK, Winn J, Zisserman A. The Pascal Visual Object Classes (VOC) Challenge. Int J Comp Vis. 2010;88:303–338. (7) Neuhold G, Ollmann T, Rota Bulò S, Kontschieder P. Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: ICCV; 2017. p. 5000–5009. (8) Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Everingham M, Gool L, Williams CK, Winn J, Zisserman A. The Pascal Visual Object Classes (VOC) Challenge. Int J Comp Vis. 2010;88:303–338. (7) Neuhold G, Ollmann T, Rota Bulò S, Kontschieder P. Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: ICCV; 2017. p. 5000–5009. (8) Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Neuhold G, Ollmann T, Rota Bulò S, Kontschieder P. Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: ICCV; 2017. p. 5000–5009. (8) Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- In-place activated batchnorm for memory-optimized training of dnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2018. p. 5639–5647. (3) Oršić M, Šegvić S. Efficient semantic segmentation with pyramidal fusion. Pattern Recognition. 2021;p. 107611. (4) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. p. 1280–1289. (5) Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, et al. The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 3213–3223. (6) Everingham M, Gool L, Williams CK, Winn J, Zisserman A. The Pascal Visual Object Classes (VOC) Challenge. Int J Comp Vis. 2010;88:303–338. (7) Neuhold G, Ollmann T, Rota Bulò S, Kontschieder P. Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: ICCV; 2017. p. 5000–5009. (8) Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Oršić M, Šegvić S. Efficient semantic segmentation with pyramidal fusion. Pattern Recognition. 2021;p. 107611. (4) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. p. 1280–1289. (5) Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, et al. The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 3213–3223. (6) Everingham M, Gool L, Williams CK, Winn J, Zisserman A. The Pascal Visual Object Classes (VOC) Challenge. Int J Comp Vis. 2010;88:303–338. (7) Neuhold G, Ollmann T, Rota Bulò S, Kontschieder P. Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: ICCV; 2017. p. 5000–5009. (8) Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. p. 1280–1289. (5) Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, et al. The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 3213–3223. (6) Everingham M, Gool L, Williams CK, Winn J, Zisserman A. The Pascal Visual Object Classes (VOC) Challenge. Int J Comp Vis. 2010;88:303–338. (7) Neuhold G, Ollmann T, Rota Bulò S, Kontschieder P. Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: ICCV; 2017. p. 5000–5009. (8) Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, et al. The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 3213–3223. (6) Everingham M, Gool L, Williams CK, Winn J, Zisserman A. The Pascal Visual Object Classes (VOC) Challenge. Int J Comp Vis. 2010;88:303–338. (7) Neuhold G, Ollmann T, Rota Bulò S, Kontschieder P. Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: ICCV; 2017. p. 5000–5009. (8) Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Everingham M, Gool L, Williams CK, Winn J, Zisserman A. The Pascal Visual Object Classes (VOC) Challenge. Int J Comp Vis. 2010;88:303–338. (7) Neuhold G, Ollmann T, Rota Bulò S, Kontschieder P. Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: ICCV; 2017. p. 5000–5009. (8) Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Neuhold G, Ollmann T, Rota Bulò S, Kontschieder P. Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: ICCV; 2017. p. 5000–5009. (8) Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Oršić M, Šegvić S. Efficient semantic segmentation with pyramidal fusion. Pattern Recognition. 2021;p. 107611. (4) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. p. 1280–1289. (5) Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, et al. The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 3213–3223. (6) Everingham M, Gool L, Williams CK, Winn J, Zisserman A. The Pascal Visual Object Classes (VOC) Challenge. Int J Comp Vis. 2010;88:303–338. (7) Neuhold G, Ollmann T, Rota Bulò S, Kontschieder P. Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: ICCV; 2017. p. 5000–5009. (8) Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. p. 1280–1289. (5) Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, et al. The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 3213–3223. (6) Everingham M, Gool L, Williams CK, Winn J, Zisserman A. The Pascal Visual Object Classes (VOC) Challenge. Int J Comp Vis. 2010;88:303–338. (7) Neuhold G, Ollmann T, Rota Bulò S, Kontschieder P. Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: ICCV; 2017. p. 5000–5009. (8) Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, et al. The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 3213–3223. (6) Everingham M, Gool L, Williams CK, Winn J, Zisserman A. The Pascal Visual Object Classes (VOC) Challenge. Int J Comp Vis. 2010;88:303–338. (7) Neuhold G, Ollmann T, Rota Bulò S, Kontschieder P. Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: ICCV; 2017. p. 5000–5009. (8) Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Everingham M, Gool L, Williams CK, Winn J, Zisserman A. The Pascal Visual Object Classes (VOC) Challenge. Int J Comp Vis. 2010;88:303–338. (7) Neuhold G, Ollmann T, Rota Bulò S, Kontschieder P. Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: ICCV; 2017. p. 5000–5009. (8) Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Neuhold G, Ollmann T, Rota Bulò S, Kontschieder P. Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: ICCV; 2017. p. 5000–5009. (8) Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. p. 1280–1289. (5) Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, et al. The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 3213–3223. (6) Everingham M, Gool L, Williams CK, Winn J, Zisserman A. The Pascal Visual Object Classes (VOC) Challenge. Int J Comp Vis. 2010;88:303–338. (7) Neuhold G, Ollmann T, Rota Bulò S, Kontschieder P. Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: ICCV; 2017. p. 5000–5009. (8) Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, et al. The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 3213–3223. (6) Everingham M, Gool L, Williams CK, Winn J, Zisserman A. The Pascal Visual Object Classes (VOC) Challenge. Int J Comp Vis. 2010;88:303–338. (7) Neuhold G, Ollmann T, Rota Bulò S, Kontschieder P. Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: ICCV; 2017. p. 5000–5009. (8) Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Everingham M, Gool L, Williams CK, Winn J, Zisserman A. The Pascal Visual Object Classes (VOC) Challenge. Int J Comp Vis. 2010;88:303–338. (7) Neuhold G, Ollmann T, Rota Bulò S, Kontschieder P. Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: ICCV; 2017. p. 5000–5009. (8) Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Neuhold G, Ollmann T, Rota Bulò S, Kontschieder P. Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: ICCV; 2017. p. 5000–5009. (8) Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 3213–3223. (6) Everingham M, Gool L, Williams CK, Winn J, Zisserman A. The Pascal Visual Object Classes (VOC) Challenge. Int J Comp Vis. 2010;88:303–338. (7) Neuhold G, Ollmann T, Rota Bulò S, Kontschieder P. Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: ICCV; 2017. p. 5000–5009. (8) Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Everingham M, Gool L, Williams CK, Winn J, Zisserman A. The Pascal Visual Object Classes (VOC) Challenge. Int J Comp Vis. 2010;88:303–338. (7) Neuhold G, Ollmann T, Rota Bulò S, Kontschieder P. Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: ICCV; 2017. p. 5000–5009. (8) Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Neuhold G, Ollmann T, Rota Bulò S, Kontschieder P. Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: ICCV; 2017. p. 5000–5009. (8) Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- The Pascal Visual Object Classes (VOC) Challenge. Int J Comp Vis. 2010;88:303–338. (7) Neuhold G, Ollmann T, Rota Bulò S, Kontschieder P. Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: ICCV; 2017. p. 5000–5009. (8) Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Neuhold G, Ollmann T, Rota Bulò S, Kontschieder P. Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: ICCV; 2017. p. 5000–5009. (8) Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: ICCV; 2017. p. 5000–5009. (8) Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Microsoft COCO: Common Objects in Context. In: ECCV; 2014. p. 740–755. (9) Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Gupta A, Dollar P, Girshick R. LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- LVIS: A Dataset for Large Vocabulary Instance Segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. . (10) Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zendel O, Honauer K, Murschitz M, Steininger D, Fernandez Dominguez G. WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- WildDash - Creating Hazard-Aware Benchmarks. In: ECCV; 2018. . (11) Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Fourure D, Emonet R, Fromont E, Muselet D, Neverova N, Trémeau A, et al. Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Multi-task, Multi-domain Learning: application to semantic segmentation and pose regression. Neurocomputing. 2017;. (12) Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lambert J, Liu Z, Sener O, Hays J, Koltun V. MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation. In: CVPR; 2020. . (13) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Learning Semantic Segmentation from Multiple Datasets with Label Shifts. In: ECCV; 2022. . (14) Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Krešo I, Krapac J, Šegvić S. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems. 2020;. (15) Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liang X, Zhou H, Xing E. Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Dynamic-structured semantic propagation network. In: CVPR; 2018. p. 752–761. (16) Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Richter SR, Hayder Z, Koltun V. Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Playing for Benchmarks. In: ICCV; 2017. p. 2232–2241. (17) Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Scene parsing through ade20k dataset. In: CVPR; 2017. p. 633–641. (18) Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Learning from partial labels. The Journal of Machine Learning Research. 2011;12:1501–1536. (19) Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zendel O, Schörghuber M, Rainer B, Murschitz M, Beleznai C. Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Unifying Panoptic Segmentation for Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 21351–21360. (20) Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Bevandić P.: Universal taxonomies for semantic segmentation (source code). Accessed: 2022-12-02. https://github.com/UNIZG-FER-D307/universal_taxonomies. (21) Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Orsic M, Bevandic P, Grubisic I, Saric J, Segvic S. Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Multi-domain semantic segmentation with pyramidal fusion. arXiv preprint arXiv:200901636, CVPRW RVC. 2020;. (22) Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Oršić M, Grubišić I, Šarić J, Šegvić S. Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Multi-Domain Semantic Segmentation With Overlapping Labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022. p. 2615–2624. (23) Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Bevandic P, Segvic S. Automatic universal taxonomies for multi-domain semantic segmentation. In: BMVC; 2022. . (24) Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440. (25) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–848. (26) Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2881–2890. (27) Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Collins MD, Zhu Y, Liu T, Huang TS, Adam H, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 12475–12485. (28) Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Galleguillos C, Belongie S. Context based object categorization: A critical survey. Computer Vision and Image Understanding. 2010 06;114:712–722. 10.1016/j.cviu.2010.02.004. (29) Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Green AI. Commun ACM. 2020;63(12):54–63. (30) Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao H, Qi X, Shen X, Shi J, Jia J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. vol. 11207 of Lecture Notes in Computer Science. Springer; 2018. p. 418–434. (31) Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (ICLR); 2016. . (32) Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- MobileNetV2: Inverted Residuals and Linear Bottlenecks; 2018. p. 4510–4520. (33) Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. p. 234–241. (34) Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou T, Wang W, Konukoglu E, Van Goo L. Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Rethinking Semantic Segmentation: A Prototype View. In: CVPR; 2022. p. 2572–2583. (35) Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Schwing AG, Kirillov A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Per-Pixel Classification is Not All You Need for Semantic Segmentation. In: NeurIPS; 2021. . (36) Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Masked-attention Mask Transformer for Universal Image Segmentation. In: CVPR; 2022. . (37) Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Li L, Zhou T, Wang W, Li J, Yang Y. Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Deep Hierarchical Semantic Segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 1236–1247. (38) Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society; 2017. p. 843–852. (39) Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zlateski A, Jaroensri R, Sharma P, Durand F. On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- On the Importance of Label Quality for Semantic Segmentation. In: CVPR; 2018. p. 1479–1487. (40) : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- : Robust Vision Challenge. Accessed: 2022-12-02. http://www.robustvision.net/index.php. (41) Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Rottmann M, Gottschalk H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In: International Conference on Computer Vision, ICCV; 2021. . (42) Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Biase GD, Blum H, Siegwart R, Cadena C. Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Pixel-Wise Anomaly Detection in Complex Driving Scenes. In: Computer Vision and Pattern Recognition, CVPR; 2021. . (43) Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Bevandić P, Krešo I, Oršić M, Šegvić S. Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Dense open-set recognition based on training with noisy negative images. Image and Vision Computing. 2022;124:104490. https://doi.org/10.1016/j.imavis.2022.104490. (44) Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kalluri T, Varma G, Chandraker M, Jawahar C. Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Universal semi-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision; 2019. p. 5259–5270. (45) Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Masaki S, Hirakawa T, Yamashita T, Fujiyoshi H. Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Multi-Domain Semantic-Segmentation using Multi-Head Model. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021. p. 2802–2807. (46) Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Simple multi-dataset detection. In: CVPR; 2022. . (47) Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Meletis P, Dubbelman G. Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: Intelligent Vehicles Symposium; 2018. p. 1045–1050. (48) Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhao X, Schulter S, Sharma G, Tsai Y, Chandraker M, Wu Y. Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Object Detection with a Unified Label Space from Multiple Datasets. In: ECCV; 2020. p. 178–193. (49) Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhu Y, Sapra K, Reda FA, Shih KJ, Newsam S, Tao A, et al. Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019. p. 8856–8865. (50) McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. McClosky D, Charniak E, Johnson M. Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Effective Self-Training for Parsing. In: NAACL; 2006. p. 152–159. (51) Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Lee DH. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. WREPL. 2013 07;. (52) Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yin W, Liu Y, Shen C, van den Hengel A, Sun B. The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- The devil is in the labels: Semantic segmentation from sentences. CoRR. 2022;abs/2202.02002. (53) Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Uijlings JRR, Mensink T, Ferrari V. The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- The Missing Link: Finding Label Relations Across Datasets. In: ECCV; 2022. p. 540–556. (54) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778. (55) Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and machine intelligence. 2019;. (56) Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Zhen M, Wang J, Zhou L, Fang T, Quan L. Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Learning Fully Dense Neural Networks for Image Semantic Segmentation. In: AAAI; 2019. . (57) Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. (58) Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Vision meets robotics: The KITTI dataset. Int J Robotics Res. 2013;32(11):1231–1237. (59) Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, et al. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. arXiv preprint arXiv:180504687. 2018;. (60) Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Varma G, Subramanian A, Namboodiri AM, Chandraker M, Jawahar CV. IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments. In: WACV; 2019. p. 1743–1751. (61) Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Song S, Lichtenberg SP, Xiao J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR; 2015. p. 567–576. (62) Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR; 2017. . (63) Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kreso I, Krapac J, Segvic S. Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images. IEEE Trans Intell Transp Syst. 2021;22(8):4951–4961. (64) Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Mohan R, Valada A. EfficientPS: Efficient Panoptic Segmentation. International Journal of Computer Vision. 2020;129:1551 – 1579. (65) Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Porzi L, Bulò SR, Colovic A, Kontschieder P. Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Seamless Scene Segmentation. In: CVPR; 2019. p. 8277–8286. (66) Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Kim D, Tsai Y, Suh Y, Faraki M, Garg S, Chandraker M, et al. Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- Learning Semantic Segmentation from Multiple Datasets with Label Shifts. CoRR. 2022;abs/2202.14030. (67) Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Xiao J, Xu Z, Lan S, Yu Z, Yuille A, Anandkumar A. 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- 1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track. CoRR. 2022;abs/2210.12852. (68) Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Liu Y, Ge P, Liu Q, Fan S, Wang Y. An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- An Empirical Study on Multi-Domain Robust Semantic Segmentation. arXiv preprint arXiv:221204221. 2022;. (69) Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Chan R, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Vanschoren J, Yeung S, editors. NeurIPS; 2021. . (70) Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135. Blum H, Sarlin P, Nieto JI, Siegwart R, Cadena C. The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
- The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. Int J Comput Vis. 2021;129(11):3119–3135.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.