Papers
Topics
Authors
Recent
2000 character limit reached

Order-preserving dynamics in one dimension -- single-file diffusion and caging from the perspective of dynamical density functional theory (2008.04279v3)

Published 10 Aug 2020 in cond-mat.soft and cond-mat.stat-mech

Abstract: Dynamical density functional theory (DDFT) is a powerful variational framework to study the nonequilibrium properties of colloids by only considering a time-dependent one-body number density. Despite the large number of recent successes, properly modeling the long-time dynamics in interacting systems within DDFT remains a notoriously difficult problem, since structural information, accounting for temporary or permanent particle cages, gets lost. Here we address such a caging scenario by reducing it to a clean one-dimensional problem, where the particles are naturally ordered (arranged on a line) by perfect cages created by their two next neighbors. In particular, we construct a DDFT approximation based on an equilibrium system with an asymmetric pair potential, such that the corresponding one-body densities still carry the footprint of particle order. Applied to a system of confined hard rods, this order-preserving dynamics (OPD) yields exact results at the system boundaries, in addition to the imprinted correct long-time behavior of density profiles representing individual particles. In an open system, our approach correctly reproduces the reduced long-time diffusion coefficient and subdiffusion, characteristic for a single-file setup. These observations cannot be made using current forms of DDFT without particle order.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.