Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Scalable Querying Scheme for Memory-efficient Runtime Models with History (2008.04230v2)

Published 10 Aug 2020 in cs.SE

Abstract: Runtime models provide a snapshot of a system at runtime at a desired level of abstraction. Via a causal connection to the modeled system and by employing model-driven engineering techniques, runtime models support schemes for (runtime) adaptation where data from previous snapshots facilitates more informed decisions. Nevertheless, although runtime models and model-based adaptation techniques have been the focus of extensive research, schemes that treat the evolution of the model over time as a first-class citizen have only lately received attention. Consequently, there is a lack of sophisticated technology for such runtime models with history. We present a querying scheme where the integration of temporal requirements with incremental model queries enables scalable querying for runtime models with history. Moreover, our scheme provides for a memory-efficient storage of such models. By integrating these two features into an adaptation loop, we enable efficient history-aware self-adaptation via runtime models, of which we present an implementation.

Citations (5)

Summary

We haven't generated a summary for this paper yet.