Papers
Topics
Authors
Recent
Search
2000 character limit reached

Concentration of measure bounds for matrix-variate data with missing values

Published 7 Aug 2020 in math.ST and stat.TH | (2008.03244v3)

Abstract: We consider the following data perturbation model, where the covariates incur multiplicative errors. For two $n \times m$ random matrices $U, X$, we denote by $U \circ X$ the Hadamard or Schur product, which is defined as $(U \circ X){ij} = (U{ij}) \cdot (X_{ij})$. In this paper, we study the subgaussian matrix variate model, where we observe the matrix variate data $X$ through a random mask $U$: $$ {\mathcal X} = U \circ X \; \; \; \text{ where} \; \; \;X = B{1/2} {\mathbb{Z}} A{1/2}, $$ where ${\mathbb{Z}}$ is a random matrix with independent subgaussian entries, and $U$ is a mask matrix with either zero or positive entries, where ${\mathbb E} U_{ij} \in [0, 1]$ and all entries are mutually independent. Subsampling in rows, or columns, or random sampling of entries of $X$ are special cases of this model. Under the assumption of independence between $U$ and $X$, we introduce componentwise unbiased estimators for estimating covariance $A$ and $B$, and prove the concentration of measure bounds in the sense of guaranteeing the restricted eigenvalue($\textsf{RE}$) conditions to hold on the unbiased estimator for $B$, when columns of data matrix $X$ are sampled with different rates. We further develop multiple regression methods for estimating the inverse of $B$ and show statistical rate of convergence. Our results provide insight for sparse recovery for relationships among entities (samples, locations, items) when features (variables, time points, user ratings) are present in the observed data matrix ${\mathcal X}$ with heterogeneous rates. Our proof techniques can certainly be extended to other scenarios. We provide simulation evidence illuminating the theoretical predictions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.