Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 16 tok/s Pro
GPT-4o 86 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 158 tok/s Pro
2000 character limit reached

An assessment of the structural resolution of various fingerprints commonly used in machine learning (2008.03189v1)

Published 7 Aug 2020 in physics.comp-ph and cond-mat.mtrl-sci

Abstract: Atomic environment fingerprints are widely used in computational materials science, from machine learning potentials to the quantification of similarities between atomic configurations. Many approaches to the construction of such fingerprints, also called structural descriptors, have been proposed. In this work, we compare the performance of fingerprints based on the Overlap Matrix(OM), the Smooth Overlap of Atomic Positions (SOAP), Behler-Parrinello atom-centered symmetry functions (ACSF), modified Behler-Parrinello symmetry functions (MBSF) used in the ANI-1ccx potential and the Faber-Christensen-Huang-Lilienfeld (FCHL) fingerprint under various aspects. We study their ability to resolve differences in local environments and in particular examine whether there are certain atomic movements that leave the fingerprints exactly or nearly invariant. For this purpose, we introduce a sensitivity matrix whose eigenvalues quantify the effect of atomic displacement modes on the fingerprint. Further, we check whether these displacements correlate with the variation of localized physical quantities such as forces. Finally, we extend our examination to the correlation between molecular fingerprints obtained from the atomic fingerprints and global quantities of entire molecules.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.