Papers
Topics
Authors
Recent
2000 character limit reached

Disentangled speaker and nuisance attribute embedding for robust speaker verification

Published 7 Aug 2020 in eess.AS and cs.SD | (2008.03024v1)

Abstract: Over the recent years, various deep learning-based embedding methods have been proposed and have shown impressive performance in speaker verification. However, as in most of the classical embedding techniques, the deep learning-based methods are known to suffer from severe performance degradation when dealing with speech samples with different conditions (e.g., recording devices, emotional states). In this paper, we propose a novel fully supervised training method for extracting a speaker embedding vector disentangled from the variability caused by the nuisance attributes. The proposed framework was compared with the conventional deep learning-based embedding methods using the RSR2015 and VoxCeleb1 dataset. Experimental results show that the proposed approach can extract speaker embeddings robust to channel and emotional variability.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.